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Problem

Providing high availability is crucial.

Data and services need to be replicated.
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Replication – model

Client processes issue
requests to the system.

N service replicas.

Updates disseminated
among replicas through
asynchronous links.

Strong consistency
for all requests.
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Transactional replication

Requests treated as
transactions.

Transactions:

- all-or-nothing
semantics,

- execution in
isolation,

- arbitrary code.

Inconsistencies in
uncommitted
transactions are
dangerous!

atomic {
float amount = 100;
if (accountA.balance() >= amount)
accountA.withdraw(amount);
else
retry;
accountB.deposit(amount);
}
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Basic approaches to replication

State Machine Replication:

1. request reception,

2. replica coordination,

3. request execution,

4. response dispatch.

No transactional support.

Deferred Update Replication:

1. request reception,

2. request execution,

3. replica coordination,

4. response dispatch.

Transactional support.
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State Machine Replication (SMR)
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Total Order
Broadcast (TOBcast)
used to disseminate a
request.

Every replica executes
the request
independently.

Requests need to be
deterministic!
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SMR – concurrently submitted requests
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SMR – crash
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Crashes are tolerated.

Typically majority of
nodes has to be up
→ efficient implemen-
tation of TOBcast.

Client might have to
reissue the request.
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Basic approaches to replication

State Machine Replication:
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Deferred Update Replication (DUR)
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Transactions execute
locally and
optimistically.

TOB is used for
synchronization
(other atomic
commitment
protocols possible).

Certification (conflict
detection) is
performed
independently.
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DUR – no conflict
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Transactions can
execute concurrently.

Certification and
applying updates is
sequential.

TOB guarantees that
replicas change state
in the same way.
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DUR – conflict (1)
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T1 and T2:

- concurrent,

- access the
same data,

- committing
both →
inconsistency.

Conflict:
T1.writeset ∩
T2.readset 6= ∅

T2 has to be rolled
back and restarted.
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DUR – conflict (2)
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DUR – crash
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Replication

State Machine Replication:

- a request is executed by all
replicas,

- all requests delivered in the
same order by every replica,

Deferred Update Replication:

- a request is executed by a
single replica,

- all updates delivered in the
same order by every replica,

+ easy to implement,

+ performs surprisingly well,

− no parallelism,

− service needs to be
deterministic.

+ powerful transactional
semantics,

+ scalable,

− suffers under contention,

− suffers when messages are
large.



17

Replication

State Machine Replication:

- a request is executed by all
replicas,

- all requests delivered in the
same order by every replica,

Deferred Update Replication:

- a request is executed by a
single replica,

- all updates delivered in the
same order by every replica,

+ easy to implement,

+ performs surprisingly well,

− no parallelism,

− service needs to be
deterministic.

+ powerful transactional
semantics,

+ scalable,

− suffers under contention,

− suffers when messages are
large.



18

SMR vs DUR – performance (1)
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Sometimes gains resulting from
parallel execution of requests in
DUR are apparent.

They are especially visible in
execution dominant workloads
→ processing power is the
limiting factor.

Performance breaks when
network gets saturated.
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SMR vs DUR – performance (2)
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High contention is deadly for
DUR.

DUR reexecutes a transaction
multiple times before it
eventually commits.

Illusive SMR scalability: for low
number of replicas, TOB is not
running at 100%.
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SMR vs DUR – performance

Our comparison1,2:

- a lot depends on the workload,

- always exists a dominant factor: TOBcast or request execution
time,

- the dominant factor varies across cluster configurations,

- substantial overhead in DUR caused by transactional
processing,

- there is no clear winner.

1Paweł T. Wojciechowski, Tadeusz Kobus, and Maciej Kokociński. “Model-Driven Comparison of
State-Machine-based and Deferred-Update Replication Schemes”. In: Proc. of SRDS ’12. Oct. 2012.
2Paweł T. Wojciechowski, Tadeusz Kobus, and Maciej Kokociński. “State-Machine and Deferred-Update

Replication: Analysis and Comparison”. In: IEEE Transactions on Parallel and Distributed Systems 28.3 (2017),
pp. 891–904.
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SMR vs DUR – semantics

State Machine Replication:

- no transactional support,

- service needs to be
deterministic.

Deferred Update Replication:

- transactional constructs:
commit, rollback, retry,

- no irrevocable operations
(i.e., system calls) inside
transactions.
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SMR vs DUR – guarantees3,4 (1)

Informally: what are the grammar rules of the replicated system?

State Machine Replication:

- satisfies real-time
linearizability,

- all requests appear as if
they were executed on a
single (reliable) machine.

Deferred Update Replication:

- satisfies update-real-time
opacity,

- all updating committed requests
appear as if they were executed
on a single (reliable) machine,

- read-only and live requests can
observe stale (but still
consistent) data.

3Tadeusz Kobus, Maciej Kokociński, and Paweł T. Wojciechowski. “The Correctness Criterion for Deferred
Update Replication”. In: Program of TRANSACT ’15. 2015.
4Tadeusz Kobus, Maciej Kokociński, and Paweł T. Wojciechowski. “Relaxing Real-time Order in Opacity and

Linearizability”. In: Elsevier Journal on Parallel and Distributed Computing 100 (2017), pp. 57–70.
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SMR vs DUR – guarantees (2)

The satisfied properties are part of the �-linearizability and
�-opacity families of properties:

- base: well known properties:
- linearizability → e.g., concurrent collections in Java,
- opacity → golden property of transactional memory (TM),

- can be used to formalize guarantees of a wide range of
(transactional and non-transactional) replicated systems,

- formal relationship between the families.

DUR provides strictly weaker guarantees compared to SMR:

- DUR → unlike SMR, no illusion of a single reliable machine
for, e.g., read-only requests,

- consequences: programmers have to be more careful when
using DUR.



24

Hybrid Transactional Replication (HTR)5,6

Transactional semantics.

Coexisting transaction execution modes:

- Deferred Update → DU transactions,
- State Machine → SM transactions.

Oracle chooses the execution mode for each transaction’s run

- read-only transactions always executed as DU transactions.

5Tadeusz Kobus, Maciej Kokociński, and Paweł T. Wojciechowski. “Hybrid Replication: State-Machine-based
and Deferred-Update Replication Schemes Combined”. In: Proc. of ICDCS ’13. July 2013.
6Tadeusz Kobus, Maciej Kokociński, and Paweł T. Wojciechowski. “Hybrid Transactional Replication:

State-Machine and Deferred-Update Replication Combined”. Under review, ArXiv preprint: arXiv:1612.06302
[cs.DC]. 2017.
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HTR – trivial case
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DU transactions
execute fully
concurrently.

One SM transaction
at a time; guaranteed
to commit.
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HTR – interesting case
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HTR – semantics and guarantees

Transactional semantics – constructs: commit, rollback, retry (as
in DUR).

DU transaction:

- may abort at any
moment,

- non-deterministic
operations allowed.

SM transaction:

- guaranteed to commit,

- suitable for executing
irrevocable operations,

- sometimes used to boost
performance.

HTR satisfies update-real-time opacity (similarly to DUR).

HTR satisfies real-time linearizability (similarly to SMR), when
there are only SM transactions.
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HTR – the oracle

Decision made on per transaction execution basis.

Used parameters:

- abort rate – ratio of aborted to all runs,

- duration of TOBcast phase,

- duration of transaction’s execution,

- network saturation,

- ...

Oracle policy is tailored to the application and may rely on
machine learning techniques → HybML.

Dynamic adaptation to the changing workload.
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HTR – performance (1)
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Hashtable benchmark:

- simple and complex scenarios,

- 3 oracles: SM, DU and HybML.

HybML oracle is at least as good as
either SM-only or DU-only oracle
(when the difference between SM
and DU mode is large enough).

Often HybML gives much better
performance!
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HTR – performance (2)
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HybML learns in which mode to
execute a transactions of a given
type.

Implementing by hand an oracle
analogous to HybML would be very
difficult.

Modelling transaction execution to
predict the optimal execution mode
would be extremely difficult too:

- very short transactions (from
start to commit 50-500µs),

- arbitary code, high-level
programming language.
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HTR – performance (3)
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201–400s - 2x as many reads and writes in updating transactions

401–600s - additional 0.1 ms sleep in updating transactions

601–800s - 2x smaller ranges for updating transactions

HybML quickly adopts to changing conditions.
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Experimental evaluation

All tests have been carried on the Eagle cluster at Poznań
Supercomputing and Networking Center:

- grant no. 272 Magazyn danych, dr hab. inż. Paweł T.
Wojciechowski,

- 3 different implementations (SMR, DUR, HTR),

- each implementation tested with dozens of workload types
and cluster configurations (3-20 nodes),

- each test: 15-50 min,

- total time: almost 600.000 CPU hours,

- tests on the Infiniband network – network is no longer the
bottleneck.
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http://www.cs.put.poznan.pl/tkobus


