
1

Transactional replication: algorithms and properties

Tadeusz Kobus, Maciej Kokociński, Paweł T. Wojciechowski

Institute of Computing Science
Poznań University of Technology

Poznań, 24/05/2017

2

Problem

Providing high availability is crucial.

Data and services need to be replicated.

3

Replication – model

Client processes issue
requests to the system.

N service replicas.

Updates disseminated
among replicas through
asynchronous links.

Strong consistency
for all requests.

Service
Replica

Service
Replica

Service
Replica

Client

Client

Client

Client

Client

Client

Network

4

Replication – model

Client processes issue
requests to the system.

N service replicas.

Updates disseminated
among replicas through
asynchronous links.

Strong consistency
for all requests.

Service
Replica

Service
Replica

Service
Replica

Client

Client

Client

Client

Client

Client

Network

5

Transactional replication

Requests treated as
transactions.

Transactions:

- all-or-nothing
semantics,

- execution in
isolation,

- arbitrary code.

Inconsistencies in
uncommitted
transactions are
dangerous!

atomic {
float amount = 100;
if (accountA.balance() >= amount)
accountA.withdraw(amount);
else
retry;
accountB.deposit(amount);
}

6

Basic approaches to replication

State Machine Replication:

1. request reception,

2. replica coordination,

3. request execution,

4. response dispatch.

No transactional support.

Deferred Update Replication:

1. request reception,

2. request execution,

3. replica coordination,

4. response dispatch.

Transactional support.

7

Basic approaches to replication

State Machine Replication:

1. request reception,

2. replica coordination,

3. request execution,

4. response dispatch.

No transactional support.

Deferred Update Replication:

1. request reception,

2. request execution,

3. replica coordination,

4. response dispatch.

Transactional support.

8

State Machine Replication (SMR)

s1

s2

s3

c1
request 1

R1

R1

R1

TOBcast

response 1

Total Order
Broadcast (TOBcast)
used to disseminate a
request.

Every replica executes
the request
independently.

Requests need to be
deterministic!

9

SMR – concurrently submitted requests

s1

s2

s3

c1

c2

request 1

R1

R1

R1

TOBcast

response 1

request 2

R2

R2

R2

TOBcast

response 2

Requests execute
sequentially.

TOB guarantees that
replicas change state
in the same way.

10

SMR – crash

s1

s2

s3

c1
request 1

timeout

recovery

request 1

R1

R1

TOBcast

response 1

Crashes are tolerated.

Typically majority of
nodes has to be up
→ efficient implemen-
tation of TOBcast.

Client might have to
reissue the request.

11

Basic approaches to replication

State Machine Replication:

1. request reception,

2. replica coordination,

3. request execution,

4. response dispatch.

No transactional support.

Deferred Update Replication:

1. request reception,

2. request execution,

3. replica coordination,

4. response dispatch.

Transactional support.

12

Deferred Update Replication (DUR)

s1

s2

s3

c1
request 1

T1

TOBcast

response 1

Ti Ti
′s execution Ti

′s successful certification applying Ti
′s updates

Transactions execute
locally and
optimistically.

TOB is used for
synchronization
(other atomic
commitment
protocols possible).

Certification (conflict
detection) is
performed
independently.

13

DUR – no conflict

s1

s2

s3

c1

c2

request 1

T1

TOBcast

response 1

request 2

T2

TOBcast

response 2

Ti Ti
′s execution Ti

′s successful certification applying Ti
′s updates

Transactions can
execute concurrently.

Certification and
applying updates is
sequential.

TOB guarantees that
replicas change state
in the same way.

14

DUR – conflict (1)

s1

s2

s3

c1

c2

request 1

T1

TOBcast

response 1

request 2

T2

TOBcast

T2

TOBcast

response 2

Ti Ti
′s execution Ti

′s successful certification Ti
′s failed certification applying Ti

′s updates

T1 and T2:

- concurrent,

- access the
same data,

- committing
both →
inconsistency.

Conflict:
T1.writeset ∩
T2.readset 6= ∅

T2 has to be rolled
back and restarted.

15

DUR – conflict (2)

s1

s2

s3

c1

c2

request 1

T1

TOBcast

response 1

request 2

T2 T2

TOBcast

response 2

conflict,
T2 aborts

Ti Ti
′s execution Ti

′s successful certification Ti
′s failed certification applying Ti

′s updates

T1 and T2:

- concurrent,

- access the
same data,

- committing
both →
inconsistency.

Conflict:
T1.writeset ∩
T2.readset 6= ∅

T2 has to be rolled
back and restarted.

16

DUR – crash

s1

s2

s3

c1
request

timeout

recovery

request

T1

TOBcast

response

Ti Ti
′s execution Ti

′s successful certification applying Ti
′s updates

Crashes are
tolerated.

Typically majority
of nodes has to be
up.

17

Replication

State Machine Replication:

- a request is executed by all
replicas,

- all requests delivered in the
same order by every replica,

Deferred Update Replication:

- a request is executed by a
single replica,

- all updates delivered in the
same order by every replica,

+ easy to implement,

+ performs surprisingly well,

− no parallelism,

− service needs to be
deterministic.

+ powerful transactional
semantics,

+ scalable,

− suffers under contention,

− suffers when messages are
large.

17

Replication

State Machine Replication:

- a request is executed by all
replicas,

- all requests delivered in the
same order by every replica,

Deferred Update Replication:

- a request is executed by a
single replica,

- all updates delivered in the
same order by every replica,

+ easy to implement,

+ performs surprisingly well,

− no parallelism,

− service needs to be
deterministic.

+ powerful transactional
semantics,

+ scalable,

− suffers under contention,

− suffers when messages are
large.

18

SMR vs DUR – performance (1)

0k

50k

100k

150k

200k

250k

300k

 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Number of replicas

Hashtable Prolonged, 10% RW

DUR
SMR

0k

50k

100k

150k

200k

250k

300k

350k

 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Number of replicas

Hashtable Default, 10% RW

DUR
SMR

Sometimes gains resulting from
parallel execution of requests in
DUR are apparent.

They are especially visible in
execution dominant workloads
→ processing power is the
limiting factor.

Performance breaks when
network gets saturated.

19

SMR vs DUR – performance (2)

0k

10k

20k

30k

40k

50k

 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Number of replicas

Hashtable High-contention, 50% RW

DUR
SMR

0k

10k

20k

30k

40k

50k

60k

 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Number of replicas

Hashtable High-contention, 90% RW

DUR
SMR

High contention is deadly for
DUR.

DUR reexecutes a transaction
multiple times before it
eventually commits.

Illusive SMR scalability: for low
number of replicas, TOB is not
running at 100%.

20

SMR vs DUR – performance

Our comparison1,2:

- a lot depends on the workload,

- always exists a dominant factor: TOBcast or request execution
time,

- the dominant factor varies across cluster configurations,

- substantial overhead in DUR caused by transactional
processing,

- there is no clear winner.

1Paweł T. Wojciechowski, Tadeusz Kobus, and Maciej Kokociński. “Model-Driven Comparison of
State-Machine-based and Deferred-Update Replication Schemes”. In: Proc. of SRDS ’12. Oct. 2012.
2Paweł T. Wojciechowski, Tadeusz Kobus, and Maciej Kokociński. “State-Machine and Deferred-Update

Replication: Analysis and Comparison”. In: IEEE Transactions on Parallel and Distributed Systems 28.3 (2017),
pp. 891–904.

21

SMR vs DUR – semantics

State Machine Replication:

- no transactional support,

- service needs to be
deterministic.

Deferred Update Replication:

- transactional constructs:
commit, rollback, retry,

- no irrevocable operations
(i.e., system calls) inside
transactions.

22

SMR vs DUR – guarantees3,4 (1)

Informally: what are the grammar rules of the replicated system?

State Machine Replication:

- satisfies real-time
linearizability,

- all requests appear as if
they were executed on a
single (reliable) machine.

Deferred Update Replication:

- satisfies update-real-time
opacity,

- all updating committed requests
appear as if they were executed
on a single (reliable) machine,

- read-only and live requests can
observe stale (but still
consistent) data.

3Tadeusz Kobus, Maciej Kokociński, and Paweł T. Wojciechowski. “The Correctness Criterion for Deferred
Update Replication”. In: Program of TRANSACT ’15. 2015.
4Tadeusz Kobus, Maciej Kokociński, and Paweł T. Wojciechowski. “Relaxing Real-time Order in Opacity and

Linearizability”. In: Elsevier Journal on Parallel and Distributed Computing 100 (2017), pp. 57–70.

23

SMR vs DUR – guarantees (2)

The satisfied properties are part of the �-linearizability and
�-opacity families of properties:

- base: well known properties:
- linearizability → e.g., concurrent collections in Java,
- opacity → golden property of transactional memory (TM),

- can be used to formalize guarantees of a wide range of
(transactional and non-transactional) replicated systems,

- formal relationship between the families.

DUR provides strictly weaker guarantees compared to SMR:

- DUR → unlike SMR, no illusion of a single reliable machine
for, e.g., read-only requests,

- consequences: programmers have to be more careful when
using DUR.

24

Hybrid Transactional Replication (HTR)5,6

Transactional semantics.

Coexisting transaction execution modes:

- Deferred Update → DU transactions,
- State Machine → SM transactions.

Oracle chooses the execution mode for each transaction’s run

- read-only transactions always executed as DU transactions.

5Tadeusz Kobus, Maciej Kokociński, and Paweł T. Wojciechowski. “Hybrid Replication: State-Machine-based
and Deferred-Update Replication Schemes Combined”. In: Proc. of ICDCS ’13. July 2013.
6Tadeusz Kobus, Maciej Kokociński, and Paweł T. Wojciechowski. “Hybrid Transactional Replication:

State-Machine and Deferred-Update Replication Combined”. Under review, ArXiv preprint: arXiv:1612.06302
[cs.DC]. 2017.

25

HTR – trivial case

s1

s2

s3

c1

c2

request 1

TDU
1

TOBcast

response 1

request 2

TDU
2

TOBcast

response 2

request 3

T SM
3

T SM
3

T SM
3

TOBcast

response 3

request 4

T SM
4

T SM
4

T SM
4

TOBcast

response 4

Ti Ti
′s execution Ti

′s successful certification applying Ti
′s updates

DU transactions
execute fully
concurrently.

One SM transaction
at a time; guaranteed
to commit.

26

HTR – interesting case

s1

s2

s3

c1

c2

request 1

TDU
1

response 1

request 2

T SM
2

T SM
2

TOBcast

T SM
2

TOBcast

response 2

Ti Ti
′s execution Ti

′s successful certification applying Ti
′s updates

SM transaction
executes concurrently
with DU transactions.

SM transaction never
conflicts.

DU transactions’
certification might be
delayed.

27

HTR – semantics and guarantees

Transactional semantics – constructs: commit, rollback, retry (as
in DUR).

DU transaction:

- may abort at any
moment,

- non-deterministic
operations allowed.

SM transaction:

- guaranteed to commit,

- suitable for executing
irrevocable operations,

- sometimes used to boost
performance.

HTR satisfies update-real-time opacity (similarly to DUR).

HTR satisfies real-time linearizability (similarly to SMR), when
there are only SM transactions.

28

HTR – the oracle

Decision made on per transaction execution basis.

Used parameters:

- abort rate – ratio of aborted to all runs,

- duration of TOBcast phase,

- duration of transaction’s execution,

- network saturation,

- ...

Oracle policy is tailored to the application and may rely on
machine learning techniques → HybML.

Dynamic adaptation to the changing workload.

29

HTR – performance (1)

0k

50k

100k

150k

200k

250k

 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Number of replicas

DU
HybML

SM

0k

50k

100k

150k

200k

250k

300k

350k

 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Number of replicas

DU
HybML

SM

Hashtable benchmark:

- simple and complex scenarios,

- 3 oracles: SM, DU and HybML.

HybML oracle is at least as good as
either SM-only or DU-only oracle
(when the difference between SM
and DU mode is large enough).

Often HybML gives much better
performance!

30

HTR – performance (2)

T0

T1

 4 6 8 10 12 14 16 18 20

D
o

m
in

a
n

t
m

o
d

e
 i
n

 H
y
b

M
L

Number of replicas

100% SM100% DU

T0-T6

T7

T8

T9

T10

 4 6 8 10 12 14 16 18 20

D
o

m
in

a
n

t
m

o
d

e
 i
n

 H
y
b

M
L

Number of replicas

100% SM100% DU

HybML learns in which mode to
execute a transactions of a given
type.

Implementing by hand an oracle
analogous to HybML would be very
difficult.

Modelling transaction execution to
predict the optimal execution mode
would be extremely difficult too:

- very short transactions (from
start to commit 50-500µs),

- arbitary code, high-level
programming language.

31

HTR – performance (3)

0k

50k

100k

150k

200k

250k

300k

 0 100 200 300 400 500 600 700 800 900 1000

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (s)

DU
HybML

SM

201–400s - 2x as many reads and writes in updating transactions

401–600s - additional 0.1 ms sleep in updating transactions

601–800s - 2x smaller ranges for updating transactions

HybML quickly adopts to changing conditions.

32

Experimental evaluation

All tests have been carried on the Eagle cluster at Poznań
Supercomputing and Networking Center:

- grant no. 272 Magazyn danych, dr hab. inż. Paweł T.
Wojciechowski,

- 3 different implementations (SMR, DUR, HTR),

- each implementation tested with dozens of workload types
and cluster configurations (3-20 nodes),

- each test: 15-50 min,

- total time: almost 600.000 CPU hours,

- tests on the Infiniband network – network is no longer the
bottleneck.

33

http://www.cs.put.poznan.pl/tkobus

