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THE MOTHER OF ALL GRAPHITES

Graphene (below, top), a plane of carbon atoms that resembles chicken
wire, is the basic building block of all the “graphitic” materials depicted

graphene sheets. When graphene is wrapped into rounded forms, fullerenes
result. They include honeycombed cylinders known as carbon nanotubes

(bottom row at center) and soccer ball-shaped molecules called buckyballs

(

below. Graphite (bottom row at left), the main component of pencil “lead,
is a crumbly substance that resembles a layer cake of weakly bonded

bottom row at right), as well as various shapes that combine the two forms.
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Fig. 2 - “Family tree” of primary carbon nanoforms showing the topological relationships between them, We note that all 1D
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Fig. 5 (a) Diamond carbon nanoporous material. Left image shows Fig. 4 (a) The quasi-periodic icosahedral nanoporous carbon materi-
carbon rings on the surface and right image shows eight unit cells of al. Left figure shows carbon rings on the surface and right figure shows
the structure decorated by carbon atoms. (b) A snapshot of hydrogen cight unit cells of the structure decorated by carbon atoms. (b) A
adsorbed in the diamond nanoporous carbon material at 3.8 MPa and snapshot of hydrogen adsorbed in the quasi-periodic icosahedral

77 K collected from the simulation (cross-section is shown). nanoporous carbon material at 3.8 MPa and 77 K.
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Fig. 7 (a) Gyroid carbon nanoporous material. Left image shows carbon rings on the surface and right image shows eight unit cells of the
structure decorated by carbon atoms. (b) A snapshot of hydrogen adsorbed in the gyroid nanoporous carbon material at 3.8 MPa and 77 K
collected from the FH-GCMC simulation (cross section of the matenal).
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Fig. 6 (a) Primitive carbon nanoporous material. Left image shows
carbon rings on the surface and right image shows eight unit cells of
the structure decorated by carbon atoms. (b) A snapshot of hydrogen
adsorbed in the primitive nanoporous carbon material at 3.8 MPa and
77 K collected from the simulation (cross section 1s shown).
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Fig. 1 (a) Simulated absolute value of adsorption (hydrogen gravi-
metric weight percent) at 77 K from the computer simulations.
Abbreviations: ) - guasi-periodic icosahedral nanoporous carbon
material, SWNT (C) - hexagonal bundle of SWNTs, SWNT (L)
simulation results of hydrogen storage in SWNTs (single wall carbon
nanotubes) taken from Levesque ef al.'® for comparison with our
results, D - diamond nanoporous carbon material, P~ primitive
nanoporous carbon material, and G - gyroid nanoporous carbon
material. (b) Same at 303 K.
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Helium is a rare gas with a wide range of applications
(e.g., lasers, fluorescent light fixtures, medical imaging, cooling technologies,
nuclear physics, diving technologies, and others).

Industrial technologies currently being used for purification
include combined cryogenic distillation and adsorption technologies
(e.g., pressure-swing adsorption, vacuum pressure swing adsorption,

and temperature swing adsorption).

Similarly, resources of He (e.g., natural gas, air, and waste gases of
ammonia synthesis) are composed of various small particles
(such as CH,, CO, Ar, Ne, O,, and others) that need to be
removed through purification processes.

Separation of fluid mixtures consisting of light particles (such as He and H,) is a far more
challenging problem. This is because the surface forces (i.e., short range London dispersion
interaction between light particles and solid atoms) are very weak.

Due to the small size of He atoms, the diffusion rate through
materials Is a very fast process.

The main aim: looking for new carbon materials!
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ABSTRACT: Elemental carbon exists in various aesthetically
P]easing architectures. These forms include a group of
synthesized a]]otropes with cobic modifications that have
taken controversial or even unidentified crystal structures,
which makes determining their physical properties difficult. In
this study, four novel cubic carbon polymorphs {fcc-Cp, foo
C14, bee-Cyy, and fee-Cyy) that exhibit lattice parameters within
the same range as those of undetermined cubic carbon a]]otropes are propo sed by emp]oying a new]y developed ab initio parﬁc]e~
swarm optimization methodology for crystal structure prediction. The four structures are all three-dimensional polymers
consisting of unique, small C,,, C,,, C,;, and C,, cages with quite low density. Investigation of their electronic and mechanical
properties illustrate that the cage-like cubic carbons are all semiconductors with excellent mechanical performance, specifically
superhardness and hjgh ducti]jty. Moreover, we readj]y exp]ajn a long«standing controversial experimenta]]y synthesized cubic
carbon (viz., the so-called “superdense” carbon) using the previously proposed bec C, based on the coincident lattice constant
and electron diffraction data between the theoretical and experimental results.

dx.daiargM 01021 /jp3064323 | 1 Phys. Charm. C 2012, 116, 2423324238
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Fig. 1 Crystal structures of the studied cubic carbon polymorphs:®® (a) fec-Cy g,
{b) fcc-Cqz, {C) bec-Cyp, and {d) foc-Cas.
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Fig. 5 GCMC snapshot of He, H,, CO, and Ar adsorbed in the fcc-Cyq cubic
carbon crystal at 6 MPa and 298 K. Under the studied operating conditions, the
fce-Cqq cubic carbon crystal adsorbs 0.0017 g cm™ of He and 0.22 g em =3 of Ar
(volumetric density of liquid He at 4.2 K and liquid Ar at 85.6 K are 0.147 g cm™>
and 1.4 g cm~3, respectively).
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Carbon cavities of fcc-C,, carbon polymorph
(with effective size of -~3.5-4 A) are
kinetically closed for common gaseous
contaminates of helium fluid (including: Ne,
Ar, H,, and CO).

Because the sizes of nanowindows connecting
carbon cavities are comparable with the
effective size of He atom (~2.556 A), we
predicted a significant resistance for self-
diffusion of He in fcc-C,, crystal.

Computed self-diffusion coefficients ~ 1.3 10
— 1.3 107 cm?/s for He inside fcc-C,, fall in the
range characteristic for molecular diffusion in
zeolites.

Infrequent “jumps” of He atoms between
neighboring carbon cavities and Kinetic
rejection of other gaseous particles indicate
potential  application of fcc-C,; carbon
polymorph for kinetic molecular sieving of He
near ambient temperatures.
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1 Periodic Table of the Elements

Carbon Nitrogen
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Figure 1. Projection of gyroidal nanoporous carbon structures along
the [100] (panel a), [110] (panel b), and [111] direction (panel c) for
all gyroids considered in this work.
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Figure 3. Diffusion properties of water in GNC structures. (a)
MSD(t) of water molecules as a function of time computed from MD
simulations. Points represent data extracted from MD simulations and
lines the best-fit slope. (b) Self-diffusion coefficient D as a function of
GNC unit cell parameter a. GNC indices are indicated for clarity. For
comparison, the value of bulk TIP3P water using the same MD setup18
is 5.3 X 10> em®*s™.
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computer simulations”
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We find that selective
separation of Ne from
diluted Ne-He mixtures on
microporous GNCs is driven
by preferential adsorption
of Ne at 77 K.

High adsorption-driven
selectivity of Ne over He at
Zero coverage IS
compensated by an
unfavourable Ne/He Kkinetic
selectivity (e.0. faster
diffusion of He).

A detailed analysis of
theoretical and simulation
results indicates that precise
tuning of curved graphene
ultramicropores in gyroidal
carbon networks to ~0.53 nm
Is a key for fabrication of
selective carbon membranes
for cryogenic separation
technoloaies.
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We find that selective
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High adsorption-driven
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SCIENCE ADVANCES | RESEARCH /  a high-resolution and multimaterial 3D
printer, Object500,
B made by Stratasys, which allowed us to print
complex geometries at 20-mm
resolution

by

A

5, (MPa)

Fig. 4. Drifferent atomistic and 3C-printad models of gyroid geometry for mechanical tests. (A} Simulation snapshots taken during the modeling of the atomic 3D
graphene structure with gyroid geometry, representing key procedures including (i} generating the coordinate of uniformly distributed carbon atoms based on the fcc
structure, (iy generating a gy'roid structure with a triangular lattice feature, and (i} refinement of the modified geometry from a gyroid with a triangular lattice to one with
ahexagonal lattice. (B} Five models of gyroid graphene with different length constants of L— 3, 5,10, 15, and 20 nm from left to right. 5cale bar, 25 nm. (€} 3D printed samplesof
the gyroid structure of various £ values and wall thicknesses. Sale bar, 25 ¢m. The tensile and compressive tests onthe 3D printed sample are shown in (B} and (E}, respectivehy.



1 Periodic Table of the Elements

Boron
10.811

14 15 16
3 4 5 6 7 8 9 10 1 12 S 1 P S
wowoo@oowmovE W Rk i EE
21 22 23 24 25 26 27 28 29 30
Sc Ti V Cr Mn Fe Co Ni Cu Zn
Scandium Titanium Vi i Cl i M Iron Cobalt Nickel Copper Zinc
44.956 47.88 50.942 51.996 54.938 55.933 58.933 58.693 63.546 65.39
39 40 41 42 43 44 45 46 47 48
Y Zr Nb Mo T¢c¢c Ru Rh Pd Ag Cd
Yitrium Zirconi iobi y i Ri i R i P i Silver Cadmium Tellurium
91.224 92.906 95.94 98.907 101.07 102.906 106.42 107.868 112.411 127.6
72 73 74 75 76 77 78 79 80 84
Hf Ta W Re Os Ir Pt Au Hg Po
Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Polonium

178.49 180.948 183.85 168.207 190.23 192.22 195.08 196.967 200.59 [208.982]
104 105 106 107 108 109 110 111 112

Rf Db Sg Bh Hs Mt Ds Rg Cn

Rutherfordium  Dubnium  Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium

[261] [262] [269] [269] [272) 2771

Lanthanide
Series

Alkali Transition » Nobl
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Virtual Porous Carbons (VPCs)
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